Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences

نویسندگان

  • Hongyuan Mei
  • Mohit Bansal
  • Matthew R. Walter
چکیده

We propose a neural sequence-to-sequence model for direction following, a task that is essential to realizing effective autonomous agents. Our alignment-based encoder-decoder model with long short-term memory recurrent neural networks (LSTM-RNN) translates natural language instructions to action sequences based upon a representation of the observable world state. We introduce a multi-level aligner that empowers our model to focus on sentence “regions” salient to the current world state by using multiple abstractions of the input sentence. In contrast to existing methods, our model uses no specialized linguistic resources (e.g., parsers) or taskspecific annotations (e.g., seed lexicons). It is therefore generalizable, yet still achieves the best results reported to-date on a benchmark single-sentence dataset and competitive results for the limited-training multi-sentence setting. We analyze our model through a series of ablations that elucidate the contributions of the primary components of our model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Listen, Attend and Spell

We present Listen, Attend and Spell (LAS), a neural network that learns to transcribe speech utterances to characters. Unlike traditional DNN-HMM models, this model learns all the components of a speech recognizer jointly. Our system has two components: a listener and a speller. The listener is a pyramidal recurrent network encoder that accepts filter bank spectra as inputs. The speller is an a...

متن کامل

Reinforcement Learning for Mapping Instructions to Actions

In this paper, we present a reinforcement learning approach for mapping natural language instructions to sequences of executable actions. We assume access to a reward function that defines the quality of the executed actions. During training, the learner repeatedly constructs action sequences for a set of documents, executes those actions, and observes the resulting reward. We use a policy grad...

متن کامل

RTDGPS Implementation by Online Prediction of GPS Position Components Error Using GA-ANN Model

If both Reference Station (RS) and navigational device in Differential Global Positioning System (DGPS) receive signals from the same satellite, RS Position Components Error (RPCE) can be used to compensate for navigational device error. This research used hybrid method for RPCE prediction which was collected by a low-cost GPS receiver. It is a combination of Genetic Algorithm (GA) computing an...

متن کامل

Volitional control of attention and brain activation in dual task performance.

This study used functional MRI (fMRI) to examine the neural effects of willfully allocating one's attention to one of two ongoing tasks. In a dual task paradigm, participants were instructed to focus either on auditory sentence comprehension, mental rotation, or both. One of the major findings is that the distribution of brain activation was amenable to strategic control, such that the amount o...

متن کامل

Mapping Dieback Intensity Distribution in Zagros Oak Forests Using Geo-statistics and Artificial Neural Network

The first and most important issue in forest drought management is knowledge of the location and severity of forest decline. In this regard, we used geostatistics and artificial neural network methods to map the dieback intensity of oak forests in the  Ilam province, Iran. We used a systematic random sampling with a 250 × 200 m grid to establish 100 plots, each covering 1200 m2. The percentage ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016